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Abstract

Understanding the distribution of infected ticks is informative for the estimation of risk for 

tickborne diseases. The blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is the primary 

vector for 7 medically significant pathogens in United States. However, knowledge of the ranges 

of these pathogens in host-seeking ticks is incomplete, particularly for those occurring at low 

prevalence. To aid in prioritizing costly field sampling efforts, we estimated ranges of suitable 

habitat for Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi in the eastern 

United States based on existing county-level surveillance records. The resulting suitability maps 

were compared against those developed previously for Bo. burgdorferi s.s., which shares similar 

ecology but has been detected in a greater number of counties. The overall accuracy of the habitat 

suitability models was high (AUC ≥ 0.92) for all 4 pathogens. The most important predictors 

were related to temperature and moisture. The upper midwestern and northeastern states were 

predicted to be highly suitable for all 4 pathogens. Based on our models, we prioritized sampling 

in 431, 275, and 539 counties currently lacking pathogen records that our models classified as 

suitable for A. phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. As a second-tier 

priority, we identified 311 (A. phagocytophilum), 590 (Ba. microti), and 252 (Bo. miyamotoi) 
counties, based on high suitability scores for Bo. burgdorferi. Our models can be used to improve 

cost-effectiveness of field sampling efforts aimed at improving accuracy and completeness of 

pathogen distribution maps.
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Introduction

The blacklegged tick, Ixodes scapularis (Acari: Ixodidae) (Say), is the primary vector 

of multiple tick-borne pathogens that account for the majority of vector-borne disease 

cases reported in the United States (Eisen and Eisen 2018, Rosenberg et al. 2018). 

Ixodes scapularis is a vector for Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) 

sensu stricto, the primary causative agent of Lyme disease, the most commonly reported 

vector-borne disease in the United States (Kugeler et al. 2021). Additionally, I. scapularis 
vectors several other medically significant pathogens including a more recently discovered 

and less common agent of Lyme disease (Bo. mayonii) (Pritt et al. 2016), Anaplasma 
phagocytophilum (anaplasmosis), Babesia microti (babesiosis), Bo. miyamotoi (hard tick-

borne relapsing fever), Ehrlichia muris eauclairensis (ehrlichiosis), and Powassan virus 

(Powassan virus disease) (Eisen and Eisen 2018). Although less commonly detected in 

I. scapularis than Bo. burgdorferi s.s., each of these pathogens has been detected in I. 
scapularis collected from upper midwestern states and most (excepting Bo. mayonii and 

E. muris eauclairensis) have been detected in northeastern states (Fleshman et al. 2021, 

2022). While reported case numbers are currently low relative to Lyme disease, human 

cases of anaplasmosis, babesiosis, and Powassan virus disease are increasing and spreading 

geographically in the northeastern and upper midwestern United States (Dahlgren et al. 

2015, Gray and Herwaldt 2019, Campbell and Krause 2020).

In 2018, the US Centers for Disease Control and Prevention (CDC) initiated a national 

tick and tickborne pathogen surveillance effort intended to provide data driven assessments 

to the public, clinicians, and policy makers regarding when and where persons are at risk 

for exposure to medically important ticks and their associated human pathogens (CDC 

2018, Eisen and Paddock 2021). This effort includes collaborations between CDC and 

public health partners to collect, test, and document tick and pathogen presence as well as 

abundance at county spatial scales. Though records are incomplete, the effort has revealed 

a substantial increase in the number of US counties where I. scapularis and its associated 

pathogens have been detected (Eisen et al. 2016, Fleshman et al. 2021, 2022).

Many efforts to model risk for I. scapularis-borne diseases in the eastern United States have 

focused on determining the habitat suitability for blacklegged ticks (Estrada-Peña 2002, 

Brownstein et al. 2003, Hahn et al. 2016), but fewer efforts have focused on modeling 

acarological risk for Lyme disease based upon the likelihood of human encounters with 

infected host-seeking ticks (Diuk-Wasser et al. 2012). Counties classified as suitable for 

sustaining Bo. burgdorferi s.s.-infected I. scapularis provided greater concordance with 

counties reporting high Lyme disease incidence in the eastern United States compared 

with models of the vector’s distribution alone (Burtis et al. 2022). However, counties 

with potentially suitable habitats for other I. scapularis-associated pathogens have not been 

modeled across range of I. scapularis in the eastern United States.
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A challenge to building habitat suitability models is access to broad geographic records of 

pathogen presence in host-seeking ticks. Tick-based surveillance efforts have yielded county 

records for the 7 pathogens vectored by I. scapularis in the United States (Fleshman et al. 

2021, 2022). However, the resulting maps are likely underestimates of the true distributions 

of these pathogens, in part because surveillance efforts are limited and detection of rare 

pathogens requires substantial testing effort (Lehane et al. 2021, Fleshman et al. 2022). We 

used these records of infected I. scapularis to predict the range of suitable habitat for the 

3 pathogens for which we had sufficient data to construct models: A. phagocytophilum, 

Ba. microti, and Bo. miyamotoi. These infection records represent presence-only data (with 

pseudo-absence), therefore the resulting suitability maps are highly dependent upon the 

presence records upon which they are built, and sampling effort is not evenly distributed 

across the eastern United States; therefore, we assume our models will predict a restricted 

range of suitable habitat. Recognizing similarities in transmission cycles between these 

pathogens and Bo. burgdorferi s.s. (LoGiudice et al. 2003, Barbour et al. 2009, Hersh et al. 

2012, Keesing et al. 2012), we compared the predicted distributions of suitable habitat for 

these 3 pathogens against a previously published suitability model for Bo. burgdorferi s.s. 

which developed habitat suitability models using an ensemble modeling approach (Burtis 

et al. 2022). The intent of comparing habitat suitability against Bo. burgdorferi s.s. was to 

determine whether predicted suitable habitat aligned across pathogens, and whether these 

distributions were defined by similar associations with the environmental predictors used in 

the models.

Methods

Field Data for Ixodes scapularis-Borne Pathogens

We generated county-level datasets for the eastern United States independently for 3 

pathogens: A. phagocytophilum, Ba. microti, and Bo. miyamotoi. County observations 

of infected I. scapularis for all 3 pathogens were derived from historical records and 

data submitted to the ArboNET Tick Module through 2021 (Fleshman et al. 2022). The 

ArboNET Tick Module is a database maintained by the CDC through which public health 

agencies and academic partners submit data documenting the presence and abundance of 

ticks and the presence and prevalence of their associated pathogens. Testing methods for the 

pathogen data included in this database conformed with CDC tick surveillance guidelines 

(CDC 2018). For each of the 3 pathogens, counties wherein at least one I. scapularis of any 

life stage tested positive for infection were coded as “present”, while those counties without 

records were coded as “no records”.

Climate and Landscape Predictors

The ecology of the 3 pathogens (A. phagocytophilum, Ba. microti, and Bo. miyamotoi) 
and Bo. burgdorferi s.s. is similar (Slajchert et al. 1997, LoGiudice et al. 2003, Barbour 

et al. 2009, Hersh et al. 2012, Keesing et al. 2012, Han 2019, Larson et al. 2021). In 

order to compare the functional relationship between environmental predictors and the 

predicted suitability for each pathogen, we used the same predictive variables that had 

been used previously to construct Bo. burgdorferi s.s. habitat suitability models (Burtis 

et al. 2022). A full list of potential predictors can be found in Supplementary Materials 
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(Supplementary Table S1). Our final models included 8 climate predictors (Table 1) from 

WorldClim (Hijmans et al. 2005) that were updated with Daymet records (Thornton et al. 

1997, 2016) collected between 1980 and 2015 (Johnson et al. 2017). Percent forest cover 

was also included as an influential predictor of I. scapularis presence in previous modeling 

efforts (Estrada-Peña 2002, Diuk-Wasser et al. 2010, Hahn et al. 2016, Burtis et al. 2022) 

and was derived from the 2006 national land cover database (Fry et al. 2011). Predictors 

were generated at a spatial resolution of 1 km × 1 km and the Zonal Statistics tool in 

QGIS (v. 3.14.1) (QGIS Development Team 2009) was used to generate county averages. 

We limited candidate predictor variables to those used in the Bo. burgdorferi s.s. mode 

to simplify comparability among the resulting pathogen distribution models. However, to 

determine if a better fit could be achieved using an expanded variable selection method, 

we constructed models using an alternative variable selection strategy described in the 

Supplementary Materials.

Pathogen Risk Modeling

To increase confidence in model predictions, rather than relying on a single statistical 

modeling framework, we employed a modeling ensemble approach. We generated 5 models 

based upon each of the 3 datasets (A. phagocytophilum, Ba. microti, and Bo. miyamotoi) 
covering the eastern United States, which represents the expected range of I. scapularis 
(Diuk-Wasser et al. 2010, Hahn et al. 2016, Burtis et al. 2022). There were 283 county-level 

observations for A. phagocytophilum, 154 for Ba. microti, and 232 for Bo. miyamotoi 
(Figs. 1–3). We used 5 modeling algorithms, (i) boosted regression tree (BRT), (ii) 

generalized linear model (GLM), (iii) maximum entropy (Maxent), (iv) multivariate adaptive 

regression splines (MARS), and (v) random forest (RF) (Talbert and Talbert, 2001). The 

Bo. burgdorferi s.s. ensemble model combined output from 3 of these modeling approaches 

(GLM, MARS, Maxent). Probability values (suitability scores hereafter) were generated by 

the models for each county, which were converted to binary form (high or low suitability) 

using 2 different suitability score thresholds. This process is fully described in the next 

section. The output of a previous habitat suitability modeling effort to identify counties that 

were suitable for Bo. burgdorferi s.s., based on 402 county-level observations was included 

for comparison with pathogen-specific model outcomes described herein (Burtis et al. 2022).

The BRT is a flexible approach that is useful when there are complex relationships between 

predictor and response variables. It is a boosting approach that iteratively fits trees. It first 

generates a sequence of simple trees and then creates new trees based upon their residuals 

(Elith et al. 2008, Merow et al. 2014). The GLM is a generalized ordinary least squares 

regression with a link to a binomial function. This approach is suitable when relationships 

between predictor and response variables are relatively simple (e.g., follow a somewhat 

linear, unimodal, or s-shaped pattern) (Guisan et al. 2017). Maxent is a maximum entropy 

approach. It relies on the generation of probability distributions to match the dataset. The 

distribution which maximizes entropy (or uncertainty) is selected. It is highly flexible 

and particularly and is well-suited for presence-only datasets (Elith et al. 2011). MARS 

represents a more flexible regression than GLM. This allows relationships between predictor 

and response variables to deviate from simple shapes (e.g., linear, unimodal, s-shaped). This 

method allows for the analysis of complex relationships between predictors and responses 
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(Guisan et al. 2017). RF is a bagging or bootstrapping aggregation approach. Trees are fit to 

different bootstrapped subsamples of the data and then the mean probability across all runs 

is determined (Breiman 2001). The ensemble approach used here can help to account for 

differences between model assumptions that can affect their output.

We built each model using the entire pathogen specific presence/pseudo-absence dataset 

containing all counties with known records of each pathogen. These models are referred 

to as the “training” models hereafter. To evaluate model performance, we used a 10-fold 

cross-validation method to generate “testing” runs for the data. This method splits the 

data into 10 equal subsets, then runs the model 10 separate times, removing one subset 

with each run. This allows for the examination of variation in model outcome when the 

underlying datasets differ slightly. The Receiver Operating Characteristic (ROC) curve and 

resulting area under the curve (AUC) were compared between the “testing” and “training” 

models. The ROC curve plots the true positive rates (sensitivity) and false positive rates 

(1-specificity) across a range of suitability scores. The AUC is derived from the ROC and 

is a measure of model accuracy that is independent of sensitivity or specificity thresholds. 

An AUC value of 1 represents a model with a ‘perfect’ fit and values <0.5 indicate that 

the model is poorly fit to the data. If the AUC values differed by >0.05 between the testing 

and training runs, consistent with previous studies we considered the models to be overfit 

(Jensen et al. 2005, Edwards et al. 2006, Phillips et al. 2006, 2009, Dormann et al. 2008, 

Zimmermann et al. 2009, Elith et al. 2011, Hahn et al. 2016, Guisan et al. 2017, Burtis et al. 

2022).

We also checked for differences between training and testing runs in specificity, sensitivity, 

positive predictive value, negative predictive value, and percent correctly classified; large 

differences can indicate an unstable model (Elith et al. 2008). Sensitivity is measured as the 

percentage of counties where the pathogen is known to occur that were accurately classified 

as suitable accounting for false negatives (e.g., number of counties where the pathogen 

has been recorded and classified by the model as suitable, divided by the total number 

of counties where the pathogen has been recorded). Specificity represents the percentage 

of counties where the pathogen has not been reported that were accurately classified as 

unsuitable by the models accounting for false positives. Positive predictive value represents 

the percentage of suitable counties that are accurately classified, while negative predictive 

value represents the percentage of unsuitable counties that are accurately classified. Percent 

correctly classified is a measure of overall model accuracy which represents the percentage 

of suitable and unsuitable counties that are correctly classified. Model evaluation followed 

the same process for the Bo. burgdorferi s.s. model as well. All models were run using the 

VisTrails Software for Assisted Habitat Suitability Modeling (SAHM v. 2.2.3) using default 

model settings.

Model Thresholding and Construction of Consensus Map

The models generate continuous values for suitability scores. To evaluate the models and 

visualize suitability, we generated binary outcomes (high- or low-suitability) from the output 

of each of our 3 models, GLM, MARS, and Maxent. For comparisons between testing and 

training model runs, we dichotomized the models using a threshold suitability score that 
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maximized the sum of sensitivity and specificity as this is this is expected to yield the most 

constrained geographic distribution of highly suitable counties when using a presence-only 

dataset (Liu et al. 2013). When thresholding models based on balanced sensitivity and 

specificity, the model sensitivities were high, between 85% and 97% (Table 2). We have 

greater confidence in presence than the pseudo-absence data in our dataset, and to allow us 

to visualize these differences we dichotomized the threshold values that yielded 90% or 95% 

sensitivity to construct the consensus maps. That is, counties with scores above the given 

threshold were scored as high-suitability and all others were scored as low-suitability.

We overlaid the binary output from each of the 3 models (GLM, MARS, Maxent) to create 

consensus maps showing the geographic distribution of suitable habitat for each of the 3 

pathogens. If a county was classified as highly suitable by 2 or more models, then that 

county was considered high-suitability for the consensus map. Any counties classified by 

one or none of the models as highly suitable were classified as low-suitability. Consensus 

maps were generated using models set at 90% and 95% sensitivity. Consensus maps 

were compared against the original county-level datasets to calculate their sensitivities, 

specificities, positive predictive values, negative predictive values, and percentages correctly 

classified. The binary output was combined to create consensus maps using QGIS (v. 

3.14.1).

Comparison Against Previously Generated Bo. burgdorferi s.s. Consensus Maps

We compared the distributions of suitable habitat for A. phagocytophilum, Bo. miyamotoi, 
and Ba. microti with the previously published distribution of counties classified as suitable 

for Bo. burgdorferi s.s. infected I. scapularis using the same methods described above 

(Burtis et al. 2022). The overlap of the 3 pathogen-specific consensus maps was compared 

against the Bo. burgdorferi s.s. map when the sensitivity of the maps was set to 95% in 

order to highlight the extent of potentially suitable habitat for each pathogen. We classified 

counties that lack records, but were predicted to be suitable for one of the pathogens (A. 
phagocytophilum, Bo. miyamotoi, Ba. microti) as high priority for tick surveillance. Those 

that were not classified as suitable for one of the 3 pathogens, but were predicted to be 

suitable for only Bo. burgdorferi s.s. were classified as moderate priority. Counties that are 

not classified as suitable for any pathogen were classified as low priority for surveillance 

efforts.

Results

Variable Assessment and Model Performance

The outputs resulting from the BRT and RF modeling algorithms were found to be overfit 

and were omitted from inclusion in consensus maps. The BRT models for Bo. miyamotoi 
showed differences in AUC >0.05 between training and testing runs. When the sum 

of sensitivity and specificity was maximized, all 3 models showed large differences in 

sensitivity between testing and training runs, with A. phagocytophilum showing a 14.5% 

difference, Ba. microti a 28.5% difference, and Bo. miyamotoi a 16.7% difference. The 

RF model showed large differences between the training and testing run in specificity 

(>9%) and sensitivity (>38%) for all 3 pathogens. Upon visual inspection, the RF and BRT 
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models also rarely predicted suitable habitat where there was not already a county-level 

observation. Adjusting model parameters did not improve the results over default settings. 

Therefore, only the outputs from the GLM, MARS, and Maxent models were included when 

constructing the consensus maps for the 3 pathogens (Figs. 1–3).

The same 8 predictors were used for the A. phagocytophilum, Ba. microti, and Bo. 
miyamotoi models (Table 1). For the GLM, MARS, and Maxent models the differences in 

AUC between training and testing runs were <0.02 for all 3 pathogen models. Additionally, 

differences in sensitivity, specificity, NPV, and PPV were ≤7% across all models for the 

3 pathogens. The full list of model selection criteria and performance metrics for the 

testing and training runs are shown in Table 2. The very small differences between the 

test and training runs indicate the models were not overly sensitive to changes in the 

presence/pseudo-absence counties included to construct the models. That is, regardless 

of which randomly selected 10% of the data were excluded from the model build set, 

the suitability classification for each county was similar among model runs. The Maxent 

modeling algorithm does not have a post-hoc variable selection process, so it used all 

predictors, with those that did not explain a large amount of variation having low normalized 

contribution values (Table 1). The geographic distributions of the predictors selected are 

shown in Fig. 4.

Predictor Response Curves

Outcomes were similar between models constructed using the Bo. burgdorferi s.s. predictors 

(Burtis et al. 2022) and those selected uniquely for each pathogen based on percent deviance 

explained (Supplementary Figs. S1–S5, Supplementary Tables S2–S4). We therefore used 

the same 8 predictors that were used to construct the Bo. burgdorferi s.s. models to construct 

habitat suitability models for the other 3 pathogens. Although the same 8 variables (Table 1) 

were used to construct suitability maps for each of the 3 pathogens, the percent contributions 

of each variable and shapes of response curves varied among the pathogens. To a lesser 

extent, these factors also varied among the modeling algorithms used for each pathogen.

Anaplasma phagocytophilum response curves.—For A. phagocytophilum 
predictions, all predictors were used by the modeling algorithms, except for precipitation 

of the coldest quarter (BIO19) which was dropped from the MARS and GLM models, and 

mean temperature of the wettest quarter (BIO8) which was dropped from the MARS model 

(Table 1). Based on the normalized contribution values, the maximum temperature of the 

warmest month (BIO5), mean diurnal temperature range (BIO2), mean temperature of the 

driest quarter (BIO9), and percent forest cover each contributed more than 15% for at least 2 

of the 3 algorithms (Table 1).

The relationship between the suitability score and BIO2 was sigmoidal for all 3 modeling 

algorithms (GLM, MARS, Maxent) with lower diurnal temperature ranges being more 

suitable than higher diurnal ranges. The slope of the relationships differs between models, 

with Maxent being the shallowest, followed by MARS, and GLM being the steepest. All 

3 models classify mean diurnal range above 12 °C as low-suitability. The relationship 

for BIO5 was unimodal for all 3 modeling algorithms. Habitat was predicted to be most 
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suitable when mean temperatures of the warmest month were between 25 °C and 31 °C, 

with a slight increase in suitability shown for the MARS model above 35 °C. For BIO9, 

suitability is highest for all 3 modeling algorithms when mean temperatures of the driest 

quarter (typically winter in the northern United States and summer in the south) are near 

−10 °C; suitability rapidly declines between −10 °C and 0 °C. Percent forest cover was 

an important predictor for the MARS and Maxent models, though both response curves 

were relatively flat with suitability scores changing <0.1 overall. These models also allow 

for interactions between predictors, which likely explains their relative importance despite 

their flat curves. The MARS model shows a gradual unimodal relationship with suitability, 

peaking at 60%, while the Maxent model predicted increasing suitability between 0% and 

30%, the relationship is then flat up to 60%, and above this it declines slightly (Fig. 5). 

Generally, A. phagocytophilum suitability was highest in areas with low diurnal temperature 

ranges throughout the year, cooler maximum temperatures during the warmest months of the 

year (summer), and very cold average temperatures in the driest quarter of the year (winter 

in the northern United States); these conditions were found predominantly in counties in the 

Northeast and Upper Midwest (Figs. 1 and 4).

Babesia microti response curves.—All 8 predictors were used for the Ba. microti 
models, except for the mean temperature of the wettest quarter (BIO8) which was dropped 

from the MARS model (Table 1). Variable contributions differed across the models, 

showing less consistency than the A. phagocytophilum or B. miyamotoi models. The mean 

temperature of the driest quarter (BIO9) contributed close to 50% for GLM (47.1%) and 

Maxent (52.2%) but contributed only 14.2% to the MARS model. By contrast, the leading 

variable in the MARS model was BIO5 (37.8%), which contributed less than 5% in the 

GLM and Maxent models. Similarly, BIO2 was the second leading variable in the MARS 

model but contributed less than 7% to the GLM and Maxent models. For GLM and Maxent, 

all other variables contributed less than 20% (Table 1).

Despite substantial differences in the normalized contributions of each variable across the 

models, the shapes of the response curves were consistent. For BIO 9, the suitability score 

was highest when the mean temperature of the driest quarter was below 0 °C. For BIO2, 

suitability scores were highest when the mean diurnal temperature range was low (~8 °C) 

and dropped substantially when the mean diurnal temperature range was above 10 °C. High 

temperatures during dry periods (BIO9) explain why much of the Southeast is classified as 

unsuitable. The low temperatures during the driest quarter and the low diurnal temperature 

range through the year in the upper Midwest and Northeast explain, in part, the relatively 

higher suitability scores observed in those regions compared with the southeast (Figs. 2 and 

4).

Borrelia miyamotoi response curves.—All predictors were used by the modeling 

algorithms for Bo. miyamotoi, except for the mean temperature of the wettest quarter 

(BIO8) which was dropped from the MARS model (Table 1). Similar to the A. 
phagocytophilum models, the maximum temperature of the warmest month (BIO5), mean 

diurnal temperature range (BIO2), and mean temperature of the driest quarter (BIO9) were 

important predictors for all 3 modeling algorithms.
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The relationship between BIO5 and habitat suitability was unimodal for all 3 models, with 

a peak in suitability when the maximum temperature of the warmest month was between 

25 °C and 32 °C. For BIO2, suitability decreased as the mean diurnal temperature range 

increased from 6 to 12 or 14 °C. Suitability scores were highest when the mean temperature 

of the driest quarter was low, with suitability declining between −10 °C and 0 °C for the 

GLM and MARS models, and more slowly between −10 °C and 20 °C for the Maxent 

model. Similar to the A. phagocytophilum predictions, suitable habitat for Bo. miyamotoi 
was highest in areas with low diurnal temperature ranges, cool summer temperatures, 

and cold temperatures during the driest quarter, which were focused predominantly in the 

Northeast and Upper Midwest (Figs. 3 and 4).

Consensus Model Performance Against County-Level Observations

Anaplasma phagocytophilum model performance.—The area predicted to be 

highly suitable by the 3 modeling algorithms based upon the A. phagocytophilum dataset 

largely overlapped with one another. The consensus map yielded an overall accuracy (AUC) 

of 0.88. When the sum of sensitivity and specificity was maximized, sensitivity of the 

consensus map was 96%. Sensitivity was relatively high in the balanced output, therefore 

we concentrated on models set to 90% and 95% sensitivity thresholds. At 90% sensitivity, 

the consensus map predicted much of the Upper Midwest and Northeast to be suitable, 

with a small gap in Illinois, southern Indiana, western Ohio, and central Michigan. The 

specificity of the consensus map was 86%. In other words, 86% of counties lacking records 

of I. scapularis infected with A. phagocytophilum were classified as low-suitability. When 

sensitivity was increased to 95%, the suitable area expanded to cover much of Indiana and 

Ohio and the specificity decreased to 82%. The negative predictive values were high (>98%) 

but the positive predictive values were low (<43%) at both sensitivity settings (Table 3). 

Overall, there was a high false positive rate, with many counties classified as suitable that 

lacked observations of infected I. scapularis in northern New Hampshire, Massachusetts, 

and Maine. Additionally, some counties in northeastern Maine were not predicted to be 

suitable at either sensitivity level, despite A. phagocytophilum being present in one coastal 

county. Much of Michigan is classified as suitable, despite largely lacking observations of A. 
phagocytophilum outside of the perimeter of the state (Fig. 1).

Babesia microti model performance.—As with the A. phagocytophilum models, and 

despite differences in the relative contribution of the predictive variable, the area predicted to 

be highly suitable by the 3 modeling algorithms based upon the Ba. microti dataset largely 

overlapped with one another. However, owing to differences in the relative contributions 

of variables, the MARS model uniquely predicted highly suitable habitat in southeastern 

Wisconsin and in northern and eastern counties in the lower peninsula of Michigan where 

the Maxent and GLM models predicted low suitability. The consensus map yielded an 

overall accuracy (AUC) of 0.91. When the sum of sensitivity and specificity was maximized, 

sensitivity of the consensus map was 98%. As with the A. phagocytophilum models, 

sensitivity was relatively high in the balanced output, therefore we concentrated on models 

set to 90% and 95% sensitivity thresholds. At 90% sensitivity, the consensus map predicted 

much of the Northeast, south to Pennsylvania, to be suitable along with a large portion of 

Minnesota and Wisconsin in the Upper Midwest. The specificity of the consensus map at 
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90% sensitivity was 92%. When sensitivity was increased to 95% the suitable area expanded 

westward from the Northeast into Ohio and included portions of southern Michigan. The 

specificity at 95% sensitivity decreased to 89%. The negative predictive values were high 

(>99%) and positive predictive values were low (<36%) at both sensitivity settings (Table 3). 

Overall, there was a high false positive rate, with counties predicted to be suitable in much 

of Maine and Ohio that currently lack data for the presence of Ba. microti. Few counties 

with Ba. microti observations were predicted to be unsuitable, with the exception of some in 

northern Illinois and in western Virginia and coastal Maine. Michigan had little data for the 

presence of Ba. microti, therefore much of the state is classified as unsuitable (Fig. 2).

Borrelia miyamotoi model performance.—As with the models for the other 2 

pathogens, the area predicted to be highly suitable by the 3 modeling algorithms based 

upon the Bo. miyamotoi dataset largely overlapped with one another. The consensus map 

yielded an overall accuracy (AUC) of 0.87. When the sum of sensitivity and specificity was 

maximized, sensitivity of the consensus map was 90%. As with the previous 2 consensus 

maps, sensitivity was relatively high in the balanced output, therefore we concentrated 

on models set to 90% and 95% sensitivity thresholds. At 90% sensitivity, the consensus 

map predicts much of the Northeast and Upper Midwest to be suitable, except for most 

of Illinois, parts of central Michigan and central Indiana. The specificity of the consensus 

map at 90% sensitivity was 85%. When sensitivity was increased to 95% the suitable 

area expanded northward in the Upper Midwest to cover the majority of Michigan and 

Minnesota. The specificity at 95% sensitivity was decreased to 78%. The negative predictive 

values were high (>98%) and positive predictive values were low (<36%) at both sensitivity 

settings (Table 3). Overall, there was a high false positive rate, with counties predicted 

to be suitable in much of Maine, New Hampshire, and Ohio that currently lack data for 

the presence of Bo. miyamotoi. Many counties in central Michigan are also classified as 

suitable, despite Bo. miyamotoi observations being concentrated along the perimeter of the 

state. Few counties with Bo. miyamotoi observations were predicted to be unsuitable, with 

those that were mostly concentrated in southern Indiana and Illinois (Fig. 3).

Comparison against Previously Generated Bo. burgdorferi s.s. Consensus Map

To prioritize counties where additional tick sampling and pathogen testing is needed to 

describe the current distribution of human pathogens in ticks with greater accuracy, we 

compared the consensus maps for A. phagocytophilum, Ba. microti, and Bo. miyamotoi 
against consensus maps for Bo. burgdorferi s.s. that had been previously constructed (Burtis 

et al. 2022). The majority of counties (>98%) that were classified as highly suitable for 

A. phagocytophilum, Ba. microti, or Bo. miyamotoi were also highly suitable for Bo. 
burgdorferi s.s. A total of 1018 counties were classified as suitable for Bo. burgdorferi 
s.s. at 95% sensitivity. Among counties where the pathogen of interest had not been 

reported, we identified 431, 275, and 539 counties classified as highly suitable for A. 
phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. These are considered high 

priority for surveillance efforts in order to confirm presence of these pathogens in counties 

classified as suitable. An additional 311 (A. phagocytophilum), 590 (Ba. microti), and 252 

(Bo. miyamotoi) counties were classified as highly suitable for Bo. burgdorferi s.s. but 

not considered highly suitable for the pathogen of interest (either A. phagocytophilum, 
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Ba. microti, or Bo. miyamotoi). These are considered moderate priority for surveillance 

efforts; we expect with adequate numbers of ticks tested, the pathogens are likely to be 

detected in these counties, but our certainty of detection is lower compared with the high 

priority group. An additional 1670 (A. phagocytophilum), 1676 (Ba. microti), and 1672 (Bo. 
miyamotoi) counties were classified as low suitability for any of the 4 pathogens and were 

therefore categorized as low priority for field collection and pathogen testing efforts. Most 

counties classified as highly suitable for Bo. burgdorferi s.s., but not the other pathogens 

were clustered along the southern and western border of the suitable areas. The exception 

being that many of the counties in Ohio, Indiana, Michigan, Illinois, Virginia, and West 

Virginia that were predicted to be highly suitable for Bo. burgdorferi s.s., were classified as 

low suitability for Ba. microti (Fig. 6).

Discussion

We developed habitat suitability models based upon the county-level datasets for 3 I. 
scapularis-borne pathogens: A. phagocytophilum, Ba. microti, and Bo. miyamotoi. These 

3 pathogens are predicted to share similar suitable habitat to Bo. burgdorferi s.s. (Burtis et 

al. 2022) as their underlying transmission dynamics are similar; each relies predominantly 

on contact between I. scapularis (Eisen and Eisen 2018) and small mammal reservoirs that 

they share in common (LoGiudice et al. 2003, Barbour et al. 2009, Hersh et al. 2012, 

Keesing et al. 2012). Suitable habitat for these pathogens exists where vector and host 

communities interact in ways that facilitate their transmission. However, Bo. burgdorferi s.s. 

is more likely to be detected than the other 3 pathogens modeled here due to higher infection 

prevalence in I. scapularis populations and more extensive surveillance efforts (Fleshman 

et al. 2021, 2022, Lehane et al. 2021). As a result, we had more county presence points 

occurring over a larger geographic area to use as our model build set for Bo. burgdorferi 
s.s. compared with other pathogens. The output of habitat suitability models is highly 

dependent upon the distribution of the underlying datasets (Guisan et al. 2017) and this 

was observed in our models. For example, Ba. microti typically lags Bo. burgdorferi s.s. 

in establishment (Diuk-Wasser et al. 2014, Dunn et al. 2014) and had the most limited 

distribution of observation points upon which to build our habitat suitability models. As a 

result, model outputs showed a narrower range of predicted suitable habitat for Ba. microti. 
Given these limitations, we believe the resulting models are likely of limited value in 

identifying the full range of suitable habitat for each pathogen but are useful for prioritizing 

surveillance activities aimed at documenting the current distribution of human pathogens in 

host-seeking ticks. Specifically, we classified 431, 275, and 539 counties as high priority for 

tick collection and pathogen testing efforts due to their lack of existing records and high 

suitability scores for A. phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. 

The majority of these counties were located in Indiana, Michigan, and Ohio in the Upper 

Midwest and Maine, New Hampshire, and Massachusetts in the Northeast.

Three predictors used in the Bo. burgdorferi s.s. model related to temperature and moisture 

were consistently highly influential for all 3 pathogens: mean diurnal temperature range 

(BIO2), maximum temperature of the warmest month (BIO5), and mean temperature of the 

driest month (BIO9). Diurnal temperature range (BIO2) is higher when there is less moisture 

in the air to regulate diurnal and nocturnal temperatures. Low moisture coupled with high 

Burtis et al. Page 11

J Med Entomol. Author manuscript; available in PMC 2024 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximum temperatures during the warmest month (BIO5) will increase desiccation rates for 

host-seeking ticks, potentially reducing host-vector contact rates resulting in lower rates of 

pathogen transmission. In the interior southeastern United States, the driest quarter is often 

the summer, whereas it is generally the winter or fall in the Upper Midwest or Northeast 

(Fig. 4). Therefore, high mean temperatures during the driest quarter (BIO9) also likely 

contribute to increased potential for desiccation. It is possible that dry air temperatures in the 

winter do not contribute to mortality as strongly since I. scapularis tend to be in diapause 

in sheltered soil refugia during the cold winter months (Gray et al. 2016). Generally, hot 

and dry conditions were associated with lower suitability scores. These conditions decrease 

I. scapularis survival by increasing their rate of desiccation (Stafford 1994, Ginsberg et 

al. 2017, Burtis et al. 2019). Dry conditions can also decrease the amount of time that I. 
scapularis is actively questing (Schulze and Jordan 2003, Berger et al. 2014, Burtis et al. 

2016). This would directly affect the survival of I. scapularis directly, and a reduction in the 

questing behavior of I. scapularis during dry conditions could result in decreased contact 

rates with reservoir hosts in southern or western states, potentially interrupting transmission 

cycles (Randolph and Storey 1999). Unfortunately, it is difficult to determine specifically 

how these predictors affect pathogen transmission cycles as they could be predictive of host 

distributions or other factors affecting tick-host contact rates.

The counties predicted to be suitable for Bo. burgdorferi s.s. are generally more extensive 

than predicted suitable counties for the other 3 pathogens (Fig. 6). This is likely due to 

the relatively limited presence data for A. phagocytophilum, Ba. microti, or Bo. miyamotoi-
infected I. scapularis available to build these models, rather than a reflection on the true 

distribution of suitable habitat for these pathogens. These limited distributions are explained 

in part by differences in sampling strategies. Our build set was based on records in 

ArboNET, some of which were derived from literature review (Fleshman et al. 2021, 2022) 

and reflect greater effort to detect Bo. burgdorferi s.s. compared with other pathogens. 

However, even within counties where the sampling and testing efforts were similar, Bo. 
burgdorferi s.s. was still more likely to be detected owing to its higher prevalence of 

infection in I. scapularis (Lehane et al. 2021). This is reflected when examining a subset 

of 408 counties from our dataset wherein all ticks were tested for all 4 pathogens. 

Bo. burgdorferi s.s. was detected in more counties (258) than A. phagocytophilum (139 

counties), Ba. microti (38 counties), or Bo. miyamotoi (101 counties).

We believe the true distributions of suitable habitats are more extensive than reflected by our 

models, highlighting the need for expanded field surveillance efforts to accurately define the 

current distribution of human pathogens in host-seeking ticks. For example, Bo. miyamotoi 
may also be more widespread than our models predict due to its capacity to be transmitted 

transovarially (Rollend et al. 2013), which may be the primary route of transmission (Lynn 

et al. 2022). Recently, I. scapularis collected from deer were found infected with Bo. 
miyamotoi in central Oklahoma (Smalley et al. 2022) far outside of the range predicted here. 

It is unknown if this detection represents adventitious infected ticks, or if the pathogen is 

established in this region, but this finding highlights the need for expanded field sampling 

across the range of I. scapularis. Despite I. scapularis being implicated as a vector relatively 

recently (Western et al. 1970, Telford et al. 1996, Gugliotta et al. 2013), resulting in a shorter 

period of time in which efforts were made to detect Bo. miyamotoi, observations cover a 
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similarly broad geographic area to that of Bo. burgdorferi s.s. and A. phagocytophilum., 

providing further evidence of its broad distribution in the United States. It is also worth 

noting that the range of suitable habitat for A. phagocytophilum we have reported here 

may be more extensive than the range of reported human anaplasmosis cases because 

our records do not differentiate between the human active-variant and deer-associated (v1) 

variants (Fleshman et al. 2022). However, these variants often co-occur geographically in 

the upper midwestern and northeastern United States (Massung et al. 2002, Courtney et al. 

2003). Further surveillance efforts that differentiate among human disease-causing strains 

and wildlife-associated strains are needed to refine estimates for human risk of tickborne 

infections.

To provide current and accurate pathogen distribution maps, ongoing tick surveillance 

efforts for infected I. scapularis should focus on counties that lack observations for the 

pathogens of interest. Our models can be used to prioritize costly field collection efforts 

based on a county’s likelihood of identifying tick-borne pathogens. Increased tick collection 

and pathogen testing efforts should be prioritized in western Wisconsin, Michigan, and Ohio 

in the Upper Midwest and New Hampshire, Maine, in the Northeast and Western Virginia in 

the Mid-Atlantic region. Broader surveillance for Bo. miyamotoi is likely needed given its 

capacity for transovarial transmission and its recent detection in Oklahoma (Smalley et al. 

2022). As new data are generated, suitability models will likely need to be updated to more 

accurately predict the range of suitable habitat for each pathogen.
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Fig. 1. 
Counties predicted to be highly suitable for detecting A. phagocytophilum-infected I. 
scapularis based on 3 individual models (GLM, MARS, Maxent), shown in maps on the left. 

The large consensus maps to the right show counties predicted to be highly suitable when ≥2 

of the individual models predict high-suitability. Points on the large maps represent counties 

where A. phagocytophilum was detected in field collected host-seeking I. scapularis. The 

maps are shown at 2 levels of sensitivity (90%, 95%).
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Fig. 2. 
Counties predicted to be highly suitable for detecting Ba. microti-infected I. scapularis based 

on 3 individual models (GLM, MARS, Maxent), shown in maps on the left. The large 

consensus maps to the right show counties predicted to be highly suitable when ≥2 of the 

individual models predict high-suitability. Points on the large maps represent counties where 

Ba. microti was detected in field collected host-seeking I. scapularis. The maps are shown at 

2 levels of sensitivity (90%, 95%).
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Fig. 3. 
Counties predicted to be highly suitable for detecting Bo. miyamotoi-infected I. scapularis 
based on 3 individual models (GLM, MARS, Maxent), shown in maps on the left. The 

large consensus maps to the right show counties predicted to be highly suitable when ≥2 of 

the individual models predict high-suitability. Points on the large maps represent counties 

where Bo. miyamotoi was detected in field collected host-seeking I. scapularis. The maps 

are shown at 2 levels of sensitivity (90%, 95%).
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Fig. 4. 
Maps showing the geographic distribution of the 8 predictors used by the 3 algorithms 

(GLM, MARS, Maxent) to model suitable habitat for the 3 pathogens (A. phagocytophilum, 

Ba. microti, Bo. miyamotoi).
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Fig. 5. 
Response curves for the predictive variables included in the climate suitability models 

using the 3 pathogen datasets; A. phagocytophilum, Ba. microti, and Bo. miyamotoi. Bo. 
burgdorferi s.s. response curves are included for comparison. The different line types 

represent the modeling algorithms, solid lines are GLM, dashed lines are MARS, and dotted 

lines are Maxent. Not all parameters were used in all models.
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Fig. 6. 
Maps showing the counties where pathogens have already been detected, those predicted 

to be suitable for A. phagocytophilum, Ba. microti, or Bo. miyamotoi at 95% sensitivity, 

and those predicted to be suitable for Bo. burgdorferi s.s. at 95% sensitivity. Maps show 

counties where pathogens have already been detected, those predicted to be suitable without 

records (highest priority for surveillance), and those without records that are suitable for 

Bo. burgdorferi s.s., but not other pathogens (moderate priority for surveillance). Counties 

predicted not to be suitable for any pathogens are the lowest priority for surveillance. 

Additional information regarding the Bo. burgdorferi s.s. models can be found in Burtis et 

al. (2022).
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Table 1.

Relative contributions of the climate predictors selected by the modeling algorithms for the pathogen datasets; 

A. phagocytophilum, Ba. microti, and Bo. miyamotoi

Predictors

Normalized contribution values (%)

GLM MARS Maxent

A. phagocytophilum models

 Mean diurnal temp. range (BIO2) 24.9 19.3 11.9

 Isothermality (BIO3) 12.0 7.8 7.4

 Max temp. warmest month (BIO5) 21.9 27.4 15.3

 Mean temp. of wettest quarter (BIO8) 1.3 — 2.4

 Mean temp. of driest quarter (BIO9) 24.7 18.9 34.0

 Precip. of warmest quarter (BIO18) 8.4 4.2 1.1

 Precip. of coldest quarter (BIO19) - — 2.7

 Percent forest cover 6.8 22.4 25.1

Ba. microti models

 Mean diurnal temp. range (BIO2) 6.8 25.5 5.0

 Isothermality (BIO3) 4.6 1.9 4.7

 Max temp. warmest month (BIO5) 4.9 37.8 4.3

 Mean temp. of wettest quarter (BIO8) 3.3 — 1.3

 Mean temp. of driest quarter (BIO9) 47.1 14.2 52.2

 Precip. of warmest quarter (BIO18) 12.0 10.8 3.2

 Precip. of coldest quarter (BIO19) 15.3 4.4 9.8

 Percent forest cover 5.9 5.3 19.3

Bo. miyamotoi models

 Mean diurnal temp. range (BIO2) 11.6 15.0 14.9

 Isothermality (BIO3) 3.4 4.3 5.0

 Max temp. warmest month (BIO5) 20.8 54.5 24.3

 Mean temp. of wettest quarter (BIO8) 1.8 — 1.5

 Mean temp. of driest quarter (BIO9) 34.4 13.1 27.2

 Precip. of warmest quarter (BIO18) 10.4 3.3 3.5

 Precip. of coldest quarter (BIO19) 8.9 1.9 6.4

 Percent forest cover 8.5 7.9 17.1

Normalized Contribution Values: Describes the contribution of each predictor to the predictive power of each of the 3 models (GLM, MARS, 
Maxent).
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